Linux网络编程
字节序
大端小端
- byteorder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30/*
字节序:字节在内存中存储的顺序。
小端字节序:数据的高位字节存储在内存的高位地址,低位字节存储在内存的低位地址
大端字节序:数据的低位字节存储在内存的高位地址,高位字节存储在内存的低位地址
*/
// 通过代码检测当前主机的字节序
#include <stdio.h>
int main() {
union {
short value; // 2字节
char bytes[sizeof(short)]; // char[2]
} test;
test.value = 0x0102;
if((test.bytes[0] == 1) && (test.bytes[1] == 2)) {
printf("大端字节序\n");
} else if((test.bytes[0] == 2) && (test.bytes[1] == 1)) {
printf("小端字节序\n");
} else {
printf("未知\n");
}
return 0;
}
/*
小端字节序
*/
字节序转换函数
主机字节序(小端/大端)<=> 网络字节序(大端)
- bytetrans.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67/*
#include <arpa/inet.h>
网络通信时,需要将主机字节序转换成网络字节序(大端),
另外一段获取到数据以后根据情况将网络字节序转换成主机字节序。
// 转换端口
uint16_t htons(uint16_t hostshort); // 主机字节序 - 网络字节序
uint16_t ntohs(uint16_t netshort); // 网络字节序 - 主机字节序
// 转IP
uint32_t htonl(uint32_t hostlong); // 主机字节序 - 网络字节序
uint32_t ntohl(uint32_t netlong); // 网络字节序 - 主机字节序
*/
#include <stdio.h>
#include <arpa/inet.h>
int main() {
// htons,转换端口
unsigned short a = 0x0102;
printf("a : %x\n", a);
unsigned short b = htons(a);
printf("b : %x\n", b);
printf("=======================\n");
// ntohs,转换端口
unsigned short a1 = 0x0102;
printf("a1 : %x\n", a1);
unsigned short b1 = htons(a1);
printf("b1 : %x\n", b1);
a1 = ntohs(b1);
printf("a : %x\n", a1);
printf("=======================\n");
// htonl,转换IP
char buf[4] = {192, 168, 1, 100};
int num = *(int *)buf;
int sum = htonl(num);
unsigned char *p = (char *)∑
printf("%d %d %d %d\n", *p, *(p+1), *(p+2), *(p+3));
printf("=======================\n");
// ntohl,转换IP
unsigned char buf1[4] = {1, 1, 168, 192};
int num1 = *(int *)buf1;
int sum1 = ntohl(num1);
unsigned char *p1 = (unsigned char *)&sum1;
printf("%d %d %d %d\n", *p1, *(p1+1), *(p1+2), *(p1+3));
return 0;
}
/*
a : 102
b : 201
=======================
a1 : 102
b1 : 201
a : 102
=======================
100 1 168 192
=======================
192 168 1 1
*/
IP地址转换
点分十进制字符串(表示的 IPv4 地址) <=> 网络字节序整数(表示的 IPv4 地址)
- iptrans.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46/*
#include <arpa/inet.h>
// p:点分十进制的IP字符串,n:表示network,网络字节序的整数
int inet_pton(int af, const char *src, void *dst);
af:地址族: AF_INET, AF_INET6
src:需要转换的点分十进制的IP字符串
dst:转换后的结果保存在这个里面
// 将网络字节序的整数,转换成点分十进制的IP地址字符串
const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);
af:地址族: AF_INET, AF_INET6
src: 要转换的ip的整数的地址
dst: 转换成IP地址字符串保存的地方
size:第三个参数的大小(数组的大小)
返回值:返回转换后的数据的地址(字符串),和 dst 是一样的
*/
#include <stdio.h>
#include <arpa/inet.h>
int main() {
// 创建一个ip字符串:点分十进制的IP地址字符串
char buf[] = "192.168.1.4";
unsigned int num = 0;
// 将点分十进制的IP字符串转换成网络字节序的整数
inet_pton(AF_INET, buf, &num);
unsigned char * p = (unsigned char *)#
printf("%d %d %d %d\n", *p, *(p+1), *(p+2), *(p+3));
// 将网络字节序的IP整数转换成点分十进制的IP字符串
char ip[16] = "";
const char * str = inet_ntop(AF_INET, &num, ip, 16);
printf("str : %s\n", str);
printf("ip : %s\n", str);
printf("%d\n", ip == str);
return 0;
}
/*
192 168 1 4
str : 192.168.1.4
ip : 192.168.1.4
1
*/
socket
专用 socket 地址
TCP/IP 协议族有 sockaddr_in 和 sockaddr_in6 两个专用的 socket 地址结构体,它们分别用于 IPv4 和IPv6。
1 |
|
套接字函数
1 |
|
TCP通信
- server.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80// TCP 通信的服务器端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
// 1.创建socket(用于监听的套接字)
int lfd = socket(AF_INET, SOCK_STREAM, 0);
if(lfd == -1) {
perror("socket");
exit(-1);
}
// 2.绑定
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
// inet_pton(AF_INET, "192.168.193.128", saddr.sin_addr.s_addr);
saddr.sin_addr.s_addr = INADDR_ANY; // 0.0.0.0
saddr.sin_port = htons(9999);
int ret = bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
if(ret == -1) {
perror("bind");
exit(-1);
}
// 3.监听
ret = listen(lfd, 8);
if(ret == -1) {
perror("listen");
exit(-1);
}
// 4.接收客户端连接
struct sockaddr_in clientaddr;
int len = sizeof(clientaddr);
int cfd = accept(lfd, (struct sockaddr *)&clientaddr, &len);
if(cfd == -1) {
perror("accept");
exit(-1);
}
// 输出客户端的信息
char clientIP[16];
inet_ntop(AF_INET, &clientaddr.sin_addr.s_addr, clientIP, sizeof(clientIP));
unsigned short clientPort = ntohs(clientaddr.sin_port);
printf("client ip is %s, port is %d\n", clientIP, clientPort);
// 5.通信
char recvBuf[1024] = {0};
while(1) {
// 获取客户端的数据
int num = read(cfd, recvBuf, sizeof(recvBuf));
if(num == -1) {
perror("read");
exit(-1);
} else if(num > 0) {
printf("recv client data : %s\n", recvBuf);
} else if(num == 0) {
// 表示客户端断开连接
printf("client closed...");
break;
}
char * data = "hello,i am server";
// 给客户端发送数据
write(cfd, data, strlen(data));
}
// 关闭文件描述符
close(cfd);
close(lfd);
return 0;
} - client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
// 1.创建套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
exit(-1);
}
// 2.连接服务器端
struct sockaddr_in serveraddr;
serveraddr.sin_family = AF_INET;
inet_pton(AF_INET, "192.168.3.194", &serveraddr.sin_addr.s_addr);
serveraddr.sin_port = htons(9999);
int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if(ret == -1) {
perror("connect");
exit(-1);
}
// 3. 通信
char recvBuf[1024] = {0};
while(1) {
char * data = "hello,i am client";
// 给服务端发送数据
write(fd, data , strlen(data));
int len = read(fd, recvBuf, sizeof(recvBuf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len > 0) {
printf("recv server data : %s\n", recvBuf);
} else if(len == 0) {
// 表示服务器端断开连接
printf("server closed...");
break;
}
sleep(1);
}
// 关闭连接
close(fd);
return 0;
}
TCP通信并发
要实现TCP通信服务器处理并发的任务,使用多线程或者多进程来解决。
进程
(1) 一个父进程,多个子进程。(2)父进程负责等待并接受客户端的连接。(3)子进程:完成通信,接受一个客户端连接,就创建一个子进程用于通信。
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
// 1.创建套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
exit(-1);
}
// 2.连接服务器端
struct sockaddr_in serveraddr;
serveraddr.sin_family = AF_INET;
inet_pton(AF_INET, "192.168.3.194", &serveraddr.sin_addr.s_addr);
serveraddr.sin_port = htons(9999);
int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if(ret == -1) {
perror("connect");
exit(-1);
}
// 3. 通信
char recvBuf[1024];
int i = 0;
while(1) {
sprintf(recvBuf, "data : %d\n", i++);
// 给服务器端发送数据
write(fd, recvBuf, strlen(recvBuf)+1);
int len = read(fd, recvBuf, sizeof(recvBuf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len > 0) {
printf("recv server : %s\n", recvBuf);
} else if(len == 0) {
// 表示服务器端断开连接
printf("server closed...");
break;
}
sleep(1);
}
// 关闭连接
close(fd);
return 0;
} - server_process.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <wait.h>
#include <errno.h>
void recyleChild(int arg) {
while(1) {
int ret = waitpid(-1, NULL, WNOHANG);
if(ret == -1) {
// 所有的子进程都回收了
break;
}else if(ret == 0) {
// 还有子进程活着
break;
} else if(ret > 0){
// 被回收了
printf("子进程 %d 被回收了\n", ret);
}
}
}
int main() {
struct sigaction act;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
act.sa_handler = recyleChild;
// 注册信号捕捉
sigaction(SIGCHLD, &act, NULL);
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
if(lfd == -1){
perror("socket");
exit(-1);
}
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_port = htons(9999);
saddr.sin_addr.s_addr = INADDR_ANY;
// 绑定
int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
if(ret == -1) {
perror("bind");
exit(-1);
}
// 监听
ret = listen(lfd, 128);
if(ret == -1) {
perror("listen");
exit(-1);
}
// 不断循环等待客户端连接
while(1) {
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
// 接受连接
int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
if(cfd == -1) {
if(errno == EINTR) {
continue;
}
perror("accept");
exit(-1);
}
// 每一个连接进来,创建一个子进程跟客户端通信
pid_t pid = fork();
if(pid == 0) {
// 子进程
// 获取客户端的信息
char cliIp[16];
inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, cliIp, sizeof(cliIp));
unsigned short cliPort = ntohs(cliaddr.sin_port);
printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
// 接收客户端发来的数据
char recvBuf[1024];
while(1) {
int len = read(cfd, &recvBuf, sizeof(recvBuf));
if(len == -1) {
perror("read");
exit(-1);
}else if(len > 0) {
printf("recv client : %s\n", recvBuf);
} else if(len == 0) {
printf("client closed....\n");
break;
}
write(cfd, recvBuf, strlen(recvBuf) + 1);
}
close(cfd);
exit(0); // 退出当前子进程
}
}
close(lfd);
return 0;
}
线程
(1) 一个父进程,多个子线程(2)父进程负责等待并接受客户端的连接(3)子线程:完成通信,接受一个客户端连接,就创建一个子线程用于通信。
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57// TCP通信的客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
// 1.创建套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
exit(-1);
}
// 2.连接服务器端
struct sockaddr_in serveraddr;
serveraddr.sin_family = AF_INET;
inet_pton(AF_INET, "192.168.3.194", &serveraddr.sin_addr.s_addr);
serveraddr.sin_port = htons(9999);
int ret = connect(fd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if(ret == -1) {
perror("connect");
exit(-1);
}
// 3. 通信
char recvBuf[1024];
int i = 0;
while(1) {
sprintf(recvBuf, "data : %d\n", i++);
// 给服务器端发送数据
write(fd, recvBuf, strlen(recvBuf)+1);
int len = read(fd, recvBuf, sizeof(recvBuf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len > 0) {
printf("recv server : %s\n", recvBuf);
} else if(len == 0) {
// 表示服务器端断开连接
printf("server closed...");
break;
}
sleep(1);
}
// 关闭连接
close(fd);
return 0;
} - server_thread.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
struct sockInfo {
int fd; // 通信的文件描述符
struct sockaddr_in addr;
pthread_t tid; // 线程号
};
struct sockInfo sockinfos[128];
void * working(void * arg) {
// 子线程和客户端通信:cfd, 客户端的信息, 线程号
// 获取客户端的信息
struct sockInfo * pinfo = (struct sockInfo *)arg;
char cliIp[16];
inet_ntop(AF_INET, &pinfo->addr.sin_addr.s_addr, cliIp, sizeof(cliIp));
unsigned short cliPort = ntohs(pinfo->addr.sin_port);
printf("client ip is : %s, prot is %d\n", cliIp, cliPort);
// 接收客户端发来的数据
char recvBuf[1024];
while(1) {
int len = read(pinfo->fd, &recvBuf, sizeof(recvBuf));
if(len == -1) {
perror("read");
exit(-1);
}else if(len > 0) {
printf("recv client : %s\n", recvBuf);
} else if(len == 0) {
printf("client closed....\n");
break;
}
write(pinfo->fd, recvBuf, strlen(recvBuf) + 1);
}
close(pinfo->fd);
return NULL;
}
int main() {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
if(lfd == -1){
perror("socket");
exit(-1);
}
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_port = htons(9999);
saddr.sin_addr.s_addr = INADDR_ANY;
// 绑定
int ret = bind(lfd,(struct sockaddr *)&saddr, sizeof(saddr));
if(ret == -1) {
perror("bind");
exit(-1);
}
// 监听
ret = listen(lfd, 128);
if(ret == -1) {
perror("listen");
exit(-1);
}
// 初始化数据
int max = sizeof(sockinfos) / sizeof(sockinfos[0]);
for(int i = 0; i < max; i++) {
bzero(&sockinfos[i], sizeof(sockinfos[i]));
sockinfos[i].fd = -1;
sockinfos[i].tid = -1;
}
// 循环等待客户端连接,一旦一个客户端连接进来,就创建一个子线程进行通信
while(1) {
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
// 接受连接
int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &len);
struct sockInfo * pinfo;
for(int i = 0; i < max; i++) {
// 从这个数组中找到一个可以用的sockInfo元素
if(sockinfos[i].fd == -1) {
pinfo = &sockinfos[i];
break;
}
if(i == max - 1) {
sleep(1);
i--;
}
}
pinfo->fd = cfd;
memcpy(&pinfo->addr, &cliaddr, len);
// 创建子线程
pthread_create(&pinfo->tid, NULL, working, pinfo);
pthread_detach(pinfo->tid);
}
close(lfd);
return 0;
}
端口复用
作用
- 防止服务器重启时之前绑定的端口还未释放
- 程序突然退出而系统没有释放端口
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22#include <sys/types.h>
#include <sys/socket.h>
// 设置套接字的属性(不仅仅能设置端口复用)
int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);
/*
参数:
- sockfd : 要操作的文件描述符
- level : 级别 - SOL_SOCKET (端口复用的级别)
- optname : 选项的名称
- SO_REUSEADDR
- SO_REUSEPORT
- optval : 端口复用的值(整形)
- 1 : 可以复用
- 0 : 不可以复用
- optlen : optval参数的大小
*/
// 端口复用,设置的时机是在服务器绑定端口之前。
setsockopt();
// 示例中的用法
int optval = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval));
bind();
示例
- tcp_client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main() {
// 创建socket
int fd = socket(PF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in seraddr;
inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
seraddr.sin_family = AF_INET;
seraddr.sin_port = htons(9999);
// 连接服务器
int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));
if(ret == -1){
perror("connect");
return -1;
}
while(1) {
char sendBuf[1024] = {0};
fgets(sendBuf, sizeof(sendBuf), stdin);
write(fd, sendBuf, strlen(sendBuf) + 1);
// 接收
int len = read(fd, sendBuf, sizeof(sendBuf));
if(len == -1) {
perror("read");
return -1;
}else if(len > 0) {
printf("read buf = %s\n", sendBuf);
} else {
printf("服务器已经断开连接...\n");
break;
}
}
close(fd);
return 0;
} - tcp_server.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90#include <stdio.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[]) {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
if(lfd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = htons(9999);
int optval = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEPORT, &optval, sizeof(optval));
// 绑定
int ret = bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
if(ret == -1) {
perror("bind");
return -1;
}
// 监听
ret = listen(lfd, 8);
if(ret == -1) {
perror("listen");
return -1;
}
// 接收客户端连接
struct sockaddr_in cliaddr;
socklen_t len = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
if(cfd == -1) {
perror("accpet");
return -1;
}
// 获取客户端信息
char cliIp[16];
inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, cliIp, sizeof(cliIp));
unsigned short cliPort = ntohs(cliaddr.sin_port);
// 输出客户端的信息
printf("client's ip is %s, and port is %d\n", cliIp, cliPort );
// 接收客户端发来的数据
char recvBuf[1024] = {0};
while(1) {
int len = recv(cfd, recvBuf, sizeof(recvBuf), 0);
if(len == -1) {
perror("recv");
return -1;
} else if(len == 0) {
printf("客户端已经断开连接...\n");
break;
} else if(len > 0) {
printf("read buf = %s\n", recvBuf);
}
// 小写转大写
for(int i = 0; i < len; ++i) {
recvBuf[i] = toupper(recvBuf[i]);
}
printf("after buf = %s\n", recvBuf);
// 大写字符串发给客户端
ret = send(cfd, recvBuf, strlen(recvBuf) + 1, 0);
if(ret == -1) {
perror("send");
return -1;
}
}
close(cfd);
close(lfd);
return 0;
}
常看网络相关信息的命令
1 |
|
IO多路复用的背景
阻塞等待
优点:不占用CPU宝贵的时间片。
缺点:同一时刻只能处理一个操作,效率低。
非阻塞,忙轮询
优点:提高了程序的执行效率。
缺点:需要占用更多的cpu和系统资源。
多线程或多进程,实现并发的缺点
当进程或线程的数量非常多时(1W+),系统调用多了,耗费了过多的系统资源。
BIO
BIO: Blocked IO
根本问题:blocking
(1)系统调用多了,线程或者进程也会消耗资源
(2)CPU调度资源浪费
NIO
NIO: Non-blocking IO
存在问题:
1W Client,每循环内 O(n) 系统调用,消耗的系统资源很多。
IO多路复用技术
I/O 多路复用使得程序能同时监听多个文件描述符,能够提高程序的性能,Linux 下实现 I/O 多路复用的系统调用主要有 select、poll 和 epoll。
select
介绍
1 |
|
1 |
|
示例
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main() {
// 创建socket
int fd = socket(PF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in seraddr;
inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
seraddr.sin_family = AF_INET;
seraddr.sin_port = htons(9999);
// 连接服务器
int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));
if(ret == -1){
perror("connect");
return -1;
}
int num = 0;
while(1) {
char sendBuf[1024] = {0};
sprintf(sendBuf, "send data %d", num++);
write(fd, sendBuf, strlen(sendBuf) + 1);
// 接收
int len = read(fd, sendBuf, sizeof(sendBuf));
if(len == -1) {
perror("read");
return -1;
} else if(len > 0) {
printf("read buf = %s\n", sendBuf);
} else {
printf("服务器已经断开连接...\n");
break;
}
// sleep(1);
usleep(1000);
}
close(fd);
return 0;
} - select.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>
int main() {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = htons(9999);
// 绑定
bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
// 监听
listen(lfd, 8);
// 创建一个fd_set的集合,存放的是需要检测的文件描述符
fd_set rdset, tmp;
FD_ZERO(&rdset);
FD_SET(lfd, &rdset);
int maxfd = lfd;
while(1) {
tmp = rdset;
// 调用select系统函数,让内核检测哪些文件描述符有数据
int ret = select(maxfd + 1, &tmp, NULL, NULL, NULL);
if(ret == -1) {
perror("select");
exit(-1);
} else if(ret == 0) {
continue;
} else if(ret > 0) {
// 检测到了监听的文件描述符的对应的缓冲区的数据发生了改变
if(FD_ISSET(lfd, &tmp)) {
// 表示有新的客户端连接
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
// 与客户端通信的文件描述符
int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
// 将新的文件描述符加入到集合中
FD_SET(cfd, &rdset);
// 更新最大的文件描述符
maxfd = maxfd > cfd ? maxfd : cfd;
}
// 与客户端通信的文件描述符
for(int i = lfd + 1; i <= maxfd; i++) {
if(FD_ISSET(i, &tmp)) {
// 说明这个文件描述符对应的客户端发来了数据
char buf[1024] = {0};
int len = read(i, buf, sizeof(buf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len == 0) {
printf("client closed...\n");
close(i);
FD_CLR(i, &rdset);
} else if(len > 0) {
printf("read buf = %s\n", buf);
write(i, buf, strlen(buf) + 1);
}
}
}
}
}
close(lfd);
return 0;
}
缺点
- 每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大。
- 同时,每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大。
- select支持的文件描述符数量太小了,默认是1024。
- fds集合不能重用,每次都需要重置。
poll
介绍
1 |
|
示例
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main() {
// 创建socket
int fd = socket(PF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in seraddr;
inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
seraddr.sin_family = AF_INET;
seraddr.sin_port = htons(9999);
// 连接服务器
int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));
if(ret == -1) {
perror("connect");
return -1;
}
int num = 0;
while(1) {
char sendBuf[1024] = {0};
sprintf(sendBuf, "send data %d", num++);
write(fd, sendBuf, strlen(sendBuf) + 1);
// 接收
int len = read(fd, sendBuf, sizeof(sendBuf));
if(len == -1) {
perror("read");
return -1;
} else if(len > 0) {
printf("read buf = %s\n", sendBuf);
} else {
printf("服务器已经断开连接...\n");
break;
}
// sleep(1);
usleep(1000);
}
close(fd);
return 0;
} - poll.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <poll.h>
int main() {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = htons(9999);
// 绑定
bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
// 监听
listen(lfd, 8);
// 初始化检测的文件描述符数组
struct pollfd fds[1024];
for(int i = 0; i < 1024; i++) {
fds[i].fd = -1;
fds[i].events = POLLIN;
}
fds[0].fd = lfd;
int nfds = 0;
while(1) {
// 调用poll系统函数,让内核帮检测哪些文件描述符有数据
int ret = poll(fds, nfds + 1, -1);
if(ret == -1) {
perror("poll");
exit(-1);
} else if(ret == 0) {
continue;
} else if(ret > 0) {
// 检测到了监听的文件描述符的对应的缓冲区的数据发生了改变
if(fds[0].revents & POLLIN) {
// 表示有新的客户端连接
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
// 将新的文件描述符(连接的文件描述符fd)加入到集合中
for(int i = 1; i < 1024; i++) {
if(fds[i].fd == -1) {
fds[i].fd = cfd;
fds[i].events = POLLIN;
break;
}
}
// 更新最大的文件描述符的索引
nfds = nfds > cfd ? nfds : cfd;
}
// 与客户端通信的文件描述符
for(int i = 1; i <= nfds; i++) {
if(fds[i].revents & POLLIN) {
// 说明这个文件描述符对应的客户端发来了数据
char buf[1024] = {0};
int len = read(fds[i].fd, buf, sizeof(buf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len == 0) {
printf("client closed...\n");
close(fds[i].fd);
fds[i].fd = -1;
} else if(len > 0) {
printf("read buf = %s\n", buf);
write(fds[i].fd, buf, strlen(buf) + 1);
}
}
}
}
}
close(lfd);
return 0;
}
改进
没有解决select中(1)、(2)
- (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大。
- (2)同时,每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大。
解决了select中(3)、(4)
- (3)select支持的文件描述符数量太小了,默认是1024。
- (4)fds集合不能重用,每次都需要重置。
epoll
介绍
1 |
|
工作模式
Epoll 的工作模式
- LT 模式 (水平触发)
1
2
3
4
5
6
7假设委托内核检测读事件 -> 检测fd的读缓冲区
读缓冲区有数据 - > epoll检测到了会给用户通知
a.用户不读数据,数据一直在缓冲区,epoll 会一直通知
b.用户只读了一部分数据,epoll会通知
c.缓冲区的数据读完了,不通知
LT(level-triggered)是缺省的工作方式,并且同时支持 block 和 no-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后可以对这个就绪的 fd 进行 IO 操作。如果你不作任何操作,内核还是会继续通知。 - ET 模式(边沿触发)
1
2
3
4
5
6
7
8
9假设委托内核检测读事件 -> 检测fd的读缓冲区
读缓冲区有数据 - > epoll检测到了会给用户通知
a.用户不读数据,数据一致在缓冲区中,epoll下次检测的时候就不通知了
b.用户只读了一部分数据,epoll不通知
c.缓冲区的数据读完了,不通知
ET(edge-triggered)是高速工作方式,只支持 no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了。但是请注意,如果一直不对这个 fd 作 IO 操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)。
ET 模式在很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。epoll工作在 ET 模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
改进
解决了select和poll的全部缺点
- (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大。
- (2)同时,每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大。
- (3)select支持的文件描述符数量太小了,默认是1024。
- (4)fds集合不能重用,每次都需要重置。
LT模式示例
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main() {
// 创建socket
int fd = socket(PF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in seraddr;
inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
seraddr.sin_family = AF_INET;
seraddr.sin_port = htons(9999);
// 连接服务器
int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));
if(ret == -1){
perror("connect");
return -1;
}
int num = 0;
while(1) {
char sendBuf[1024] = {0};
sprintf(sendBuf, "send data %d", num++);
write(fd, sendBuf, strlen(sendBuf) + 1);
// 接收
int len = read(fd, sendBuf, sizeof(sendBuf));
if(len == -1) {
perror("read");
return -1;
} else if(len > 0) {
printf("read buf = %s\n", sendBuf);
} else {
printf("服务器已经断开连接...\n");
break;
}
// sleep(1);
usleep(1000);
}
close(fd);
return 0;
} - epoll_lt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
int main() {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = htons(9999);
// 绑定
bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
// 监听
listen(lfd, 8);
// 调用epoll_create(): 创建一个epoll实例
int epfd = epoll_create(100);
// 将监听的文件描述符相关的信息添加到epoll实例中
struct epoll_event epev;
epev.events = EPOLLIN;
epev.data.fd = lfd;
// 对epoll实例进行管理:添加文件描述符信息
epoll_ctl(epfd, EPOLL_CTL_ADD, lfd, &epev);
struct epoll_event epevs[1024];
while(1) {
int ret = epoll_wait(epfd, epevs, 1024, -1);
if(ret == -1) {
perror("epoll_wait");
exit(-1);
}
printf("ret = %d\n", ret);
for(int i = 0; i < ret; i++) {
int curfd = epevs[i].data.fd;
if(curfd == lfd) {
// 有客户端连接请求到达
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
// 将cfd对应的读事件添加到epoll实例中
epev.events = EPOLLIN;
epev.data.fd = cfd;
// 对epoll实例进行管理:添加文件描述符信息
epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &epev);
} else {
if(epevs[i].events & EPOLLOUT) {
continue;
}
// 有客户端发送数据过来
char buf[1024] = {0};
int len = read(curfd, buf, sizeof(buf));
if(len == -1) {
perror("read");
exit(-1);
} else if(len == 0) {
printf("client closed...\n");
// 对epoll实例进行管理:删除文件描述符信息
epoll_ctl(epfd, EPOLL_CTL_DEL, curfd, NULL);
close(curfd);
} else if(len > 0) {
printf("read buf = %s\n", buf);
write(curfd, buf, strlen(buf) + 1);
}
}
}
}
close(lfd);
close(epfd);
return 0;
}
ET模式示例
- client.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
int main() {
// 创建socket
int fd = socket(PF_INET, SOCK_STREAM, 0);
if(fd == -1) {
perror("socket");
return -1;
}
struct sockaddr_in seraddr;
inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
seraddr.sin_family = AF_INET;
seraddr.sin_port = htons(9999);
// 连接服务器
int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));
if(ret == -1){
perror("connect");
return -1;
}
int num = 0;
while(1) {
char sendBuf[1024] = {0};
// sprintf(sendBuf, "send data %d", num++);
fgets(sendBuf, sizeof(sendBuf), stdin);
write(fd, sendBuf, strlen(sendBuf) + 1);
// 接收
int len = read(fd, sendBuf, sizeof(sendBuf));
if(len == -1) {
perror("read");
return -1;
} else if(len > 0) {
printf("read buf = %s\n", sendBuf);
} else {
printf("服务器已经断开连接...\n");
break;
}
}
close(fd);
return 0;
} - epoll_et.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <fcntl.h>
#include <errno.h>
int main() {
// 创建socket
int lfd = socket(PF_INET, SOCK_STREAM, 0);
struct sockaddr_in saddr;
saddr.sin_port = htons(9999);
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
// 绑定
bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));
// 监听
listen(lfd, 8);
// 调用epoll_create(): 创建一个epoll实例
int epfd = epoll_create(100);
// 将监听的文件描述符相关的检测信息添加到epoll实例中
struct epoll_event epev;
epev.events = EPOLLIN;
epev.data.fd = lfd;
// 对epoll实例进行管理:添加文件描述符信息
epoll_ctl(epfd, EPOLL_CTL_ADD, lfd, &epev);
struct epoll_event epevs[1024];
while(1) {
int ret = epoll_wait(epfd, epevs, 1024, -1);
if(ret == -1) {
perror("epoll_wait");
exit(-1);
}
printf("ret = %d\n", ret);
for(int i = 0; i < ret; i++) {
int curfd = epevs[i].data.fd;
if(curfd == lfd) {
// 监听的文件描述符有数据达到,有客户端连接
struct sockaddr_in cliaddr;
int len = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);
// 设置cfd属性非阻塞
int flag = fcntl(cfd, F_GETFL);
flag |= O_NONBLOCK;
fcntl(cfd, F_SETFL, flag);
epev.events = EPOLLIN | EPOLLET; // 设置边缘触发模式
epev.data.fd = cfd;
// 对epoll实例进行管理:添加文件描述符信息
epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &epev);
} else {
if(epevs[i].events & EPOLLOUT) {
continue;
}
// 循环读取出所有数据
char buf[5];
int len = 0;
while((len = read(curfd, buf, sizeof(buf))) > 0) {
// 打印数据
// printf("recv data : %s\n", buf);
write(STDOUT_FILENO, buf, len);
write(curfd, buf, len);
}
if(len == 0) {
printf("client closed....");
} else if(len == -1) {
if(errno == EAGAIN) {
printf("data over.....");
} else {
perror("read");
exit(-1);
}
}
}
}
}
close(lfd);
close(epfd);
return 0;
}
Linux网络编程
https://lcf163.github.io/2021/04/10/Linux网络编程/